Publicaciones nacionales

0

Consuelo Macías-Abraham, Lázaro O. del Valle-Pérez, Aymara Baganet-Cobas, Elvira Dorticós-Balea, Juan C. Jaime-Fagundo, Rosa M. Lam-Díaz, Bertha B. Socarrás-Ferrer, Miriam Sánchez-Segura, Vianed Marsán-Suárez, Lourdes Palma-Salgado, Porfirio Hernández-Ramírez, José M. Ballester-Santovenia
ver en

RESUMEN
La Medicina Regenerativa es una novedosa terapéutica de amplio potencial en diferentes enfermedades para la cual se utilizan células madre procedentes de la médula ósea (MO), cuya caracterización fenotípica es limitada. En nuestro trabajo se estudió la expresión de diferentes marcadores de la membrana celular en células mononucleares (CMN) de la MO de 14 pacientes a quienes se les realizó terapia celular autóloga, obtenidas por punción medular y movilización a la sangre periférica, con el objetivo de caracterizar los diferentes tipos de células presentes en esta población celular heterogénea e identificar las moléculas de adhesión implicadas en su adhesión. Se observó mayor presencia de células madre adherentes del estroma medular en las CMN obtenidas directamente de la MO; una mayor población de células CD90+ en las CMN procedentes de sangre periférica CD34-/CD45- con una elevada expresión de las moléculas CD44 y CD62L, lo que sugiere mayor presencia de células madre mesenquimales (CMM) en las células movilizadas del estroma medular. Los valores más elevados de células CD34+ en las células madre procedentes de sangre periférica con baja expresión de las moléculas CD117- y DR- sugiere la presencia de células madre hematopoyéticas, hemangioblastos y células progenitoras endoteliales movilizadas a la circulación periférica. Se demostró que tanto las CMN procedentes de MO como de sangre periférica, muestran una elevada expresión de células madre con expresión de la molécula de adhesión CD44 (marcador de CMM), probablemente implicadas en su migración, asentamiento y diferenciación.

0

Tras la huella de las células madre

Prof. DrC. Porfirio Hernández RamírezI; Dra. Elvira Dorticós BaleaI

IInstituto de Hematología e Inmunología. Ciudad de La Habana, Cuba.

 

RESUMEN

En los últimos años ha surgido un gran interés en conocer la biodistribución de las células madre en el organismo después que son infundidas o inyectadas directamente en una parte del cuerpo. Para esto se han usado diferentes procederes, entre ellos, el marcaje de las células con diferentes fluorocromos, tales como la proteína con fluorescencia verde y la proteína con fluorescencia roja; o bien se les hace una transfección con plasmidos que codifican proteínas fluorescentes o se emplean sondas moleculares fluorescentes para la identificación de cromosomas. Recientemente se han introducido técnicas imagenológicas de avanzada no invasivas, entre las que tenemos la resonancia magnético nuclear, así como procederes basados en el marcaje con radionúclidos para la obtención de imágenes detectadas por tomografía por emisión de positrones (PET, del inglés positron emission tomography), o por tomografía computarizada por emisión de fotón único (SPECT, del inglés single- photon emission computed tomography).

 

 

 

 

 


RESUMEN

En los últimos años ha surgido un gran interés en conocer la biodistribución de las células madre en el organismo después que son infundidas o inyectadas directamente en una parte del cuerpo. Para esto se han usado diferentes procederes, entre ellos, el marcaje de las células con diferentes fluorocromos, tales como la proteína con fluorescencia verde y la proteína con fluorescencia roja; o bien se les hace una transfección con plasmidos que codifican proteínas fluorescentes o se emplean sondas moleculares fluorescentes para la identificación de cromosomas. Recientemente se han introducido técnicas imagenológicas de avanzada no invasivas, entre las que tenemos la resonancia magnético nuclear, así como procederes basados en el marcaje con radionúclidos para la obtención de imágenes detectadas por tomografía por emisión de positrones (PET, del inglés positron emission tomography), o por tomografía computarizada por emisión de fotón único (SPECT, del inglés single- photon emission computed tomography).

 

Acceso directo a través del HINARI en http://bvs.sld.cu/revistas/hih/vol_26_2_10/hih03210.htm

                     Disponible en: 
http:// www.16deabril.sld.cu/rev/230/articulo7.html

Autores:
Angélica María Cruañas Hernández *
Elizabeth Martínez Castro **
Carmen Lourdes Bermudo Cruz ***

Tutor:
Dr. Orlando Guerra Cobian ****

* Estudiante de 5to año de Estomatología. Alumna Ayudante de Cirugía Maxilofacial
** Estudiante de 3er año de Estomatología y Alumna Ayudante de Cirugía Maxilofacial
*** Estudiante de 3er año de Estomatología y Alumna Ayudante de Ortodoncia
**** Especialista I Grado Cirugía Maxilo Facial. Diplomado Educación Medica Superior. Profesor Asistente.

Instituto Superior de Ciencias Médicas de La Habana
Facultad de Estomatología
“Raúl González Sánchez”
Departamento de Cirugía. Ciudad de la Habana, 2007

 

 

Introducción

En los últimos años el término “célula madre” ha tomado gran importancia desde que la terapia génica y la clonación son temas de discusión en la literatura mundial. Desde que en 1998 se aislaran y cultivaran exitosamente células madre procedentes de embriones humanos, la literatura científica ha recogido exhaustivamente cada acción relacionada con estas, existiendo cerca de 125 000 publicaciones científicas biomédicas en estos últimos 25 años y unos 33 000 desde el año 2000 al actual.

De manera natural, los tejidos del cuerpo a lo largo de la vida sufren un desgaste, del que se defienden, y desarrollan una capacidad intrínseca de auto-renovar esos tejidos que se desgastan. De no existir esta renovación, se reduciría considerablemente la esperanza de vida de los seres vivos. La nueva medicina regenerativa, se propone reparar los tejidos dañados utilizando mecanismos similares a los que de forma natural usa el organismo para la renovación de las poblaciones celulares que van envejeciendo y que deben ser sustituidas por otras que suplen su función.

El sistema estomatognático no resulta ajeno a estos fenómenos patológicos o degenerativos, y estando asociado a múltiples funciones de desempeño concomitante, los tejidos bucales son blanco fácil de las entidades, pero dadas sus características de presentar elementos de las distintas estirpes celulares, tales como: una vascularización rica, la posibilidad de representar sus patrones reparativos, que han sido altamente estudiados, con posibilidades de reproducirlos xenológicamente, resulta propicio, con la medicina regenerativa, apreciar la cavidad bucal como fuente y asiento de los procederes biotecnológicos relacionados con la terapia celular, la ingeniería tisular y los bancos de tejidos. 1, 2, 3

Motivados por estas líneas de desarrollo, nos damos a la tarea de hacer la presente revisión bibliográfica y nos surge la interrogante: ¿resultan las células madre un método terapéutico, seguro y práctico? Como objetivo nos propusimos identificar el estado actual de las investigaciones con células madre presentes en la pulpa dental de dientes temporales, permanentes y ligamento periodontal, y sus perspectivas, para la aplicación clínica en la Ingeniería Tisular.

 

Desarrollo
Se realizó la presente revisión bibliográfica con el objetivo de conocer el estado actual de las investigaciones y aplicaciones de las células madre en el complejo bucal. Se estudiaron 62 artículos de fuentes primarias recopilados de forma electrónica y considerada de impacto científico. La medicina regenerativa es la disciplina médica que se ha basado fundamentalmente en los nuevos conocimientos sobre las células madre y en su capacidad de convertirse en células de diferentes tejidos. Se sustenta en la terapia celular, en la administración de elementos subcelulares y en la ingeniería de tejidos, conductas utilizadas para reemplazar por células sanas a las células dañadas por diversos procesos en determinados tejidos, propone reparar los tejidos dañados mediante mecanismos similares a los que de forma natural emplea el organismo para la renovación de las poblaciones celulares que van envejeciendo y que deben ser sustituidas por otras que suplen su función.1, 2,3

Los mecanismos que posee el organismo de regeneración, reparación y renovación de tejidos son limitados y dependientes de la rapidez de instauración del daño o degeneración. En 1916 Danchakoff describe la presencia de una célula como precursora de otras en la médula ósea, lo que fue confirmado posteriormente por Sabin y Maximow, constituyendo estos hallazgos las primicias de los sucesos asociados a las células madre.4
Una célula madre es una célula “genérica” que puede hacer copias exactas de sí misma indefinidamente. Además, una célula madre tiene la capacidad de producir líneas celulares especializadas para varios tejidos del cuerpo, tales como: músculo cardíaco, tejido cerebral, tejido hepático, fibras periodontales y dentina, entre otras; asimismo se le han añadido dos propiedades funcionales, con la capacidad de implantación persistente, tanto en tejidos dañados como en sanos. 5, 6, 7,8
En un inicio se utilizó el mismo término que en inglés: Stem cells, pero más paulatinamente se han introducido diversos nombres que han estado en dependencia más bien del criterio del traductor. Así, encontramos acepciones como estas: células troncales, células tronco, células precursoras, células progenitoras y células estaminales.9, 10 Por otra parte, la célula progenitora o precursora puede considerarse una célula que ya ha alcanzado una diferenciación parcial y ha perdido la capacidad pluripotencial de la célula madre.9

Todas las células somáticas del organismo tienen, en principio, el mismo contenido genético (el mismo genoma, que es la totalidad de genes de un organismo), no obstante, lo que distingue las células de una estirpe de las células de otra estirpe no es, por tanto, la información genética de que disponen, sino la expresión diferencial de unos u otros genes (la expresión de los genes se traduce en la síntesis de proteínas); así, las células que expresan determinados genes, producen unas proteínas específicas. Lo que determina qué genes expresa una célula y qué genes no expresa, no es el contenido genético de la célula, sino factores externos al genoma, entre los que se hallan el microambiente en que vive la célula, que contiene gran cantidad y diversidad de señales que le indican y le ordenan cuál debe ser su patrón de comportamiento. Estas señales se denominan globalmente factores epigenéticos (que pueden ser factores externos a la célula o bien factores intracelulares).11-16

 

Existen dos tipos básicos
Células madre embrionarias (1981): Deriva del embrión de los mamíferos en su etapa de blastocisto, que se obtienen de fetos abortados Son útiles para propósitos médicos o para investigación, porque pueden producir células para casi todos los tejidos del cuerpo. Deriva del embrión de los mamíferos en su etapa de blastocisto. Después de la penetración del espermatozoide, el óvulo fecundado adquiere la condición de cigoto, en el que durante su recorrido por la trompa de Falopio, se van produciendo sucesivamente distintos períodos de división celular que incrementan rápidamente el número de sus células, las cuales reciben el nombre de blastómeros. Aproximadamente a los 3 días, el embrión tiene el aspecto de una esfera compacta que se denomina mórula y que contiene de 12 a 16 blastómeros. Alrededor de los 4 días llega a la cavidad uterina, y sobre los 5, comienza a introducirse líquido en su interior para formar una cavidad: el blastocele. En esta etapa, el cigoto se llama blastocisto y posee en uno de sus polos una agrupación celular que recibe el nombre de masa celular interna o embrioblasto, que forma una prominencia dentro del blastocele. Células de la masa interna no mantienen indefinidamente in vivo su capacidad de generación de cualquier tipo celular, pues estas se van diferenciando progresivamente en los diversos tipos celulares durante la fase intrauterina del desarrollo. Sin embargo, cuando se extraen de su ambiente embrionario natural y se cultivan in vitro, sí son capaces de proliferar ilimitadamente, y a su vez, mantener su potencial de generar células capaces de diferenciarse en cualquiera de los tejidos del organismo. En este estado es que se califican como células madre embrionarias. Puesto que estas células proceden de un embrión humano vivo, desde el primer momento su manipulación y destino se ha enfrentado en diferentes países a una fuerte oposición, basada principalmente en aspectos éticos, religiosos y políticos. El primer reporte acerca del aislamiento de células madre embrionarias provenientes de blastocistos humanos data de 1994, cuando se determinó que estas células in vitro se diferencian espontáneamente en estructuras multicelulares conocidas como “cuerpos embrionarios”, que contienen elementos de las tres capas germinales a partir de las cuales se pueden forman varios tipos de células como cardiomiocitos, neuronas y progenitores hematopoyéticos, entre otros .17- 25

Células madre germinales (EG). No es tipo básico. Se localizan en la cresta germinal de los fetos, lugar donde se produce la diferenciación de la línea germinal. Algunos las consideran también embrionarias.

Células madre adultas o somáticas: se ha definido como una célula especializada dentro de la organización de las células de un tejido específico de un organismo ya formado, que está restringida en su capacidad de diferenciación y es capaz únicamente de generar células del tejido que representa, a las que debe recambiar de forma natural, aunque han mostrado en determinadas condiciones, capacidad para diferenciarse en células de diferentes linajes, así las células madre hematopoyéticas son capaces de diferenciarse en diversos tejidos, entre ellos: endotelio, músculo cardíaco, músculo estriado, hepatocitos, neuronas, piel e intestino. El término “célula madre adulta” puede confundir, porque tanto los niños como los adultos las tienen. Se ha señalado la existencia de células madre adultas en varios sitios del organismo, que incluyen: médula ósea, sangre periférica, sangre del cordón umbilical, cerebro, médula espinal, grasa, pulpa dentaria, vasos sanguíneos, músculo esquelético, piel, tejido conjuntivo, córnea, retina, hígado, conductos pancreáticos, folículo piloso, tejido gastrointestinal y pulmón.

Las células madre también se han clasificado, según su potencialidad celular, en: totipotentes, pluripotentes y multipotentes.

Totipotentes: son aquellas que en las condiciones apropiadas son capaces de formar un individuo completo, pues pueden producir tejido embrionario y extra-embrionario.

Pluripotentes: son las que tienen la habilidad de diferenciarse a tejidos procedentes de cualquiera de las 3 capas embrionarias, aunque estas células por sí solas no pueden producir un individuo, ya que necesitan el trofoblasto; sí originan todos los tipos de células y tejidos del organismo. En esta categoría estarían las células provenientes de la masa celular interna del blastocisto.

Multipotentes: que pueden diferenciarse en distintos tipos celulares procedentes de la misma capa embrionaria, lo que las capacitaría para la formación de tipos celulares diferentes, pero no de todos. 26-38

CÉLULAS MADRE EN LA CAVIDAD BUCAL
Se han identificado 4 grupos principales de células madre en la cavidad bucal, de sus tejidos específicos.39, 40, 41,42
– Células Madre en pulpas de dientes temporales (SHED CELLS).
– Células Madre en pulpas de dientes permanentes (DPSCs).
– Células Madre presentes en espacios periodontales (PDLSCs)
– Células Madre de la mucosa bucal

Células madre en pulpas de dientes temporales (SHED CELLS)
Songtao Shi, odontopediatra del Instituto Nacional Dental de Investigaciones Craneofaciales de Bethesda, Maryland, en sus experimentos iniciales utilizó un diente de su hija. “Una vez que se le cayó, comenzamos a mirarlo cuidadosamente”, dijo Shi. Al observar en el mismo, tejido de color rojo, lo extrajo y lo examinó en el laboratorio, y de allí logró extraer células madre vivas. 43,44

Aisló células madre adultas en dientes temporales de niños de 7 u 8 años de edad. Previamente había aislado células madre en dientes permanentes y amplió el estudio a los deciduales. Los dientes fuentes de células, fueron mantenidos por los padres de los niños (en leche y refrigerados), para garantizar la viabilidad celular. Las pulpas dentales se extrajeron y manipularon enzimáticamente, obteniéndose cultivos de células madre. Se encontró más frecuencia en los incisivos que en los molares de células madre y que entre un 12 y un 20% de las células en pulpas de dientes deciduales eran células totipotenciales. Estas células fueron denominadas SHED CELLS (células madre exfoliadas de dientes deciduales).
Las SHED CELLS, se sometieron a factores tisulares de crecimientos diferenciados en cultivos y se logró la diferenciación en células nerviosas, adipocitos y odontogénicas, identificadas clínica e inmunofenotípicamente. Estas células SHED, fueron trasplantadas a tejidos cerebral y dérmico en ratas inmunocomprometidas y desarrollaron características nerviosas, muy replicables y viables. Así, estas células, presentes en todos los individuos, resulta una fuente segura de un material replicable para producir dentina y tejido neurológico autogénico.45, 46,47

Células madre en pulpas de dientes permanentes (DPSCs)
Las población de células madre adultas en pulpas dentales de dientes permanentes también resultan muy evidentes y estas se han denominado DPSCs. El rasgo más llamativo de estas células es su capacidad extrema de regenerar el complejo pulpa- dentina compuesto por una matriz mineralizada con túbulos lineales, con odontoblastos y tejido de contenido fibroso, rico en vasos sanguíneos, con semejante disposición al complejo dentina-pulpa adulto. Se ha encontrado también que las DPSCs son capaces, al igual que los osteoblastos, de expresar marcadores óseos, tales como: sialoproteínas óseas, fosfatasa alcalina, colágeno tipo I y osteocalcina. La diferenciación a esta línea ósea es regulada por la familia osteo-reguladora de TGFß y las citoquinas. Así existe gran similitud entre la expresibilidad genética de las células madre de pulpas de dientes permanentes y las células madre de estroma medular, precursoras de los osteoblastos (BMSSCs) 48, 49,50

La principal fuente de células madre adultas de dientes permanentes son los terceros molares, extraíbles entre los 19 y 29 años de edad por diferentes razones. Estas células madre tienen la ventaja de ser autógenas y de baja inmunogenicidad. Las DPSCs, incluso pueden experimentar adipogénesis, a pesar de que en la pulpa dental estos elementos tisulares no se presentan. Mediante medios enriquecidos adipo-inductores pueden generar adipocitos ácidos grasos rojos o positivo, correlacionando esta conversión fenotípica con una expresión del gen temprano, marcador maestro, PPA?2 y el tardío marcador de la lipasa lipoproteica.51

Songtao Shi, estudió el comportamiento de las células madre procedentes de la papila apical, tanto in vitro, como en modelos animales (ratones). Una vez identificadas las células madre apropiadas para crear una nueva raíz, estos investigadores reemplazaron un incisivo de un cerdo enano (tienen una estructura dental parecida a la humana) por una estructura en forma de raíz dental de material cerámico (hydroxyapatite/tricalcium phosphate o HA/TCP) que hacía de molde y de vehículo portador de células madre de papilas apicales procedentes de muelas del juicio, de humanos jóvenes de entre 18 y 20 años de edad.

Tres meses más tarde de implantar estas células los investigadores lograron encajar en la cuenca del antiguo incisivo una corona sintética de porcelana sobre la nueva raíz remineralizada, que contaba con nuevos ligamentos desarrollados allí mismo. Pudieron demostrar, además, que los nuevos tejidos formados eran humanos. Después de seis meses de la implantación los investigadores comprobaron que, aunque el nuevo diente no era tan resistente como los naturales, tenían la suficiente calidad como para cumplir su función. 52

George T. J. Huang, investigador, endodoncista y profesor asociado del Colegio de Cirugía Dental de la Universidad de Maryland, en la edición de diciembre de 2006 del Journal of Endodontics, revisó cuatro casos de caries en preadolescentes tratados por odontólogos taiwaneses que limpiaron el tejido dental infectado de dientes permanentes jóvenes. Pero no lo extrajeron, sino que dejaron las células madre de la pulpa en su sitio. Estas células madre continuaron ayudando a los dientes a recuperarse, regenerarse y madurar, para convertirse en dientes fuertes y sanos.

Los investigadores recalcaron que las células madre en cuestión son células madre adultas (no las controvertidas células que provienen de embriones), que tienen todos los niños y adultos. Además, el procedimiento de limpieza que utilizaron para reemplazar el tratamiento de canal tradicional se basa en la aplicación de una sustancia blanqueadora, no en la introducción de células madre derivadas externamente. Las cámaras de la pulpa de los dientes de los niños que tenían problemas se irrigaron con 20 ml. de una solución al 2.5 por ciento de hipoclorito de sodio, una sustancia química que se usa con frecuencia como desinfectante y blanqueador. Luego de la limpieza, se secaron los dientes y se llenaron con una pasta de hidróxido de calcio, un agente antimicrobiano removible que actuó como biomodulador. No hubo complicaciones y el único efecto secundario observado fue el angostamiento del espacio del conducto de las raíces. Huang y sus colegas llegaron a la conclusión de que los hallazgos “sugieren de manera contundente un cambio de paradigma” en el tratamiento de los dientes permanentes inmaduros, con énfasis en estimular el proceso natural de regeneración del tejido en lugar de interrumpirlo con materiales de empaste artificiales.53

 

Células Madre presentes en espacios periodontales (PDLSCs)
La reparación del ligamento periodontal parece involucrar las células madre presentes en el mismo para la formación de fibroblastos, cementoblastos y osteoblastos. Estas células aparecen en racimos en la vecindad de los vasos sanguíneos periodontales y presentan características semejantes a las células madre embrionarias.54, 55

Para su obtención, las muestras dentales fueron tomadas de donantes hembras previo consentimiento; los dientes extraídos fueron lavados con solución salina buffer fosfato 3x, con estreptomicina y penicilina, sujetados mediante clanes en las coronas, para lo cual se usó una pieza de mano a baja velocidad y un disco de diamante con adecuada irrigación. A continuación se efectuó una sección de la superficie dental, con profundidad de 0.5mm y se colocó en un medio esencial con 10% de suero de ternero enriquecido, antibiótico y a una atmósfera CO2 al 5%.Después de 10 días de cultivo las células proliferativas tomaron varias morfologías.

Las células con morfología semejante a ligamento periodontal fueron diluidas y cultivadas en láminas de vidrio específicas, cultivadas por 24 horas y tratadas inmunohistoquímicamente. Las células neoformadas debían cumplir los criterios de positividad para los marcadores CD105, CD166, CD29, CD44, representativos de las células madre mesenquimatosas y negativos para marcadores CD14, CD34, y CD45, referidos estos a células hematopoyéticas. Además de estos requisitos, debían tener plasticidad para formar líneas condrogénicas, osteogénicas, y adipogénicas, según el medio enriquecido que se iba a utilizar. Las células madre obtenidas se colocaron en un medio, conjugándose con células habituales del ligamento, en un medio que contenía suero de ternero fetal al 10% y antibióticos. Transcurridos 7 días se identifico inmunohistoquímicamente que el ligamento periodontal adulto neoformado expresaba colágeno III, sin embargo, las células presentaban una morfología más fusiforme. Los niveles de osteocalcina obtenidos fueron menores que los del ligamento normal, las sialoproteínas óseas también fueron identificadas.56

 

Células Madre de la Mucosa Bucal
Los queratocitos bucales también han sido aislados y cultivados para expresar su totipotencialidad y fueron recopilados de la mucosa oral, cultivados en suero libre de cualquier producto de otra procedencia animal; después de 7 días, se agruparon por morfología y tamaño, seleccionándose los mayores. Se utilizó la novedosa técnica de filtración gravitacional para el sorteo celular asistido (GACS), estas células se sembraron en dermis de cadáver humano de un 1 cm. cuadrado de área y luego de cuatro días en medios neutros se obtuvo una monocapa de células, que fue colocada en medio enriquecido y se obtuvo en epitelio estratificado de estructura semejante a la dermis del cadáver, que llegó a tener a los 13 días una extensión de 4 cm.

Esta investigación resultó la base para el aislamiento e inclusión de células madre de la mucosa oral, en mallas de piel sintética, para la reparación de defectos por lesiones cutáneas que tuvieron baja inmunogenicidad, sin contractura cicatrizal después de ser evaluadas por 3 años.57
Reconstrucciones óseas de cuerpos mandibulares con células madre
Los procedimientos reconstructivos de los huesos de la región facial para defectos postraumáticos, tumorales o congénitos, pueden requerir de tejidos sustitutivos, en ocasiones de grandes dimensiones, los que generan defectos en las estructuras donantes. Esta situación puede ser eliminada mediante el uso de la Ingeniería Tisular.

Novedosos diseños de piezas reconstructivas sembradas con células madre se han establecido, con diferentes modelos, según los defectos. Uno de los primeros modelos utilizados se ha denominado modelo minipig (porcino básico que utiliza células madre mesenquimatosas, aisladas, de íleo de cerdo) cultivadas y sembradas en tableros de acido poli- DL-láctico-coglicólico, siendo esterilizadas en iodopovidona al 10%. Esta estructura conformada se colocó en un biorreactor y fue incubada por 10 días en suplementos y medios osteogénicos. Examinado previamente en animales, se crearon cuatro defectos de 2×2 cm en mandíbulas porcinas y se dispusieron en los defectos los tableros creados con sus contenidos celulares. Después de 6 semanas se evaluó el proceso reparativo. Se apreció radiográficamente una zona de radiolucidez con focos de radiopacidad. Histológicamente se determinaron osteoblastos y osteocitos maduros con una red fibrilar colágena densa y focos de endotelio vascular. En otros defectos en los que solo se colocó el tablero poliglicólico solamente se apreció el crecimiento del puente óseo, con un área central poliglicólica. En estudios continuados se han sometido los tableros celulares después de 4 semanas a distracción osteogénica, lográndose por la plasticidad celular, remodelado óseo.58, 59

Reconstrucciones condilares
La articulación témporo-mandibular resulta muy susceptible de afecciones traumáticas, infecciosas o degenerativas que produzcan la destrucción de sus elementos articulares. Para su reparación se han implementado numerosas técnicas e introducido novedosos biomateriales. Se han realizado estudios en ratas, con el objetivo de lograr a expensas de células madre mesenquimatosas, un cóndilo mandibular, semejante al humano, encapsulado en un polímero biocompatible.60, 61

Las células madre mesenquimatosas adultas (MSCs) fueron obtenidas de fémur y tibia de ratas, con aguja 18 y jeringuillas. Colocadas en suero fetal bovino 10%, las células medulares fueron centrifugadas, resuspendidas en suero y cultivadas por 2 semanas. Las células madre mesenquimatosas fueron tripsinizadas y cultivadas para lograr cultivos específicos, y tratadas por separado, con medios osteogénicos (dexametasona, glicerol fosfato y ácido ascórbico 2 fosfato) y condrogénicos (incluyó los anteriores y TGF-ß1).

Después de cultivadas las células fueron colocadas en polidiacrilato disuelto en PBS, suplementados con penicilina y estreptomicina. La pieza obtenida fue sepultada en el dorso de ratas con anestesia local y previa inmunodepresión de la misma, nueve semanas después de la implantación el patrón fue escindido del dorso del animal, separándose cuidadosamente la capsula fibrosa que lo rodeaba. Luego se lavó con mucha precaución con PBS y se fijó en formalina al 10%, parafina; seguidamente fue seccionada en cortes de 5 micrones paralelos a su eje axial. También fueron colocadas en distintas tinciones para tipos celulares específicos. La masa neocondilar era firme, opaca y semejante al molde de cóndilo humano que la incluía. Se encontraron capas estratificadas de condrocitos y osteocitos, con condroblastos y osteoblastos asociados con actividad celular adecuada; se identificó también matriz extracelular y una matriz 0 positiva de células semejantes a condrocitos.61

Reconstrucciones radículares dentarias
Resulta uno de los trabajos más recientes de Ingeniería Tisular, publicado en diciembre de 2006 por la revista Plos One de la Public Library Science, norteamericana. La publicación constituye el pilar de futuros trabajos, en los cuales el profesor Songtao Shi, fundamenta que es posible la regeneración dental a partir de células madre. El resultado final del estudio es la formación de un muñón radicular dental incisivo que puede servir de soporte para una corona sintética de porcelana.62

Las células madre resultaron obtenidas de los molares de cerdos y cultivadas con medios nutritivos y de enriquecimiento para formación del complejo pulpa-dentina, para línea osteoblástica y fibroblástica. Después de lograr colonias con las densidades correspondientes se trasplantaron en un medio de suero de ternero fetal a un molde de hidroxiapatita-fosfato tricálcico. Las formaciones radículares neoformadas fueron implantadas en los alvéolos residuales, después de la extracción del diente afectado; el muñón implantado fue protegido con férula, en un cerdo inmunodeprimido previamente. Después de tres meses se colocó la corona artificial brindando carga a la formación radicular.62 Fue identificado radiográficamente un espacio periodontal adecuado y una formación dentina con densidad adecuada.

Conclusiones

1. Las células madre dentales SHED CELLS, DPSCs y PDLSCs, resultan un material disponible y autólogo listo para utilizarse en procederes reparativos de los tejidos dentarios.
2. Las células madre adultas (DPSCs), dado su potencial de transdiferenciación, pueden ser utilizadas para la reparación de los tejidos nervioso, cardíaco y óseo.
3. Las células madre periodontales (PDLSCs) evidenciaron una fuerte plasticidad al formar de manera adecuada, el complejo cemento-fibras periodontales, manteniendo su expresión histológica y enzimática.
4. Los medios de enriquecimiento específicos, modelos de soportes y marcadores enzimáticos deben ser incrementados par lograrse más especificidad.
5. No existen aún evidencias de los efectos locales y sistémicos a mediano y largo plazos, de la terapia celular y de las modificaciones de los patrones genéticos celulares que estas pudieran generar.

Referencias Bibliográficas
1. López Moratalla N. La racionalidad terapéutica en la medicina regenerativa con células troncales embrionarias o de adulto. Anal Real Acad Nal Farm 2003; 69:21-45.
2. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414:92-7.
3. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med 2003; 349:267-74.
4. Danchakoff V. Origin of the blood cells: development of the haematopoietic organs and regeneration of the blood cells from the standpoint of the monophyletic school. Anat Rec. 1916, 10: 397-413.
5. Körbling M, Estrov Z. Adult stem cells for tissue repair – A new therapeutic concept? N Engl J Med 2003; 349:570-82.
6. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. 
Nat Med 2005; 11: 228-232.
7. Chan J, O’Donoghue K, de la Fuente J, et al. 
Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005; 23: 93-102.
8. Wilmut I. Human cells from cloned embryos in research and therapy. BMJ 2004; 328: 415-416.
9. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002; 12: 502-508.
10. Clarke D, Frisen J. Differentiation potential of adult stem cells. Curr Opin Genet Dev 2001; 11: 575-580.
11. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002; 416:545-548.
12. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49.
13. Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, Fauza DO. Fetal tissue engineering from amniotic fluid. J AmColl Surg 2003; 196:592–7.
14. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, Zam-belli Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, Chaubert P, Gerber S, Scaletta C, et al. Tissue engineered fetal skin con-structsfor paediatric burns. Lancet 2005; 366:840–2.
15. Daley G (2004). Missed opportunities in embryonic stem-cell research. N Engl J Med 351:627.
16. Aznar, J., Alternativas a la utilización de células madre embrionarias con vista a la medicina regenerativa y reparadora, en: (2002-02-24)

http://www.bioeticaweb.com/Inicio_de_la_vida/Aznar_altertantiv_cel_mad.htm.

17. McKinell, R.G., Cloning of Homo sapiens? No! Differentiation (2002) 69; 150-153.
18. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cells. Stem Cells 2001; 19: 193-204.
19. Cowan CA, Klimanskaya I, and McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004; 350: 1353-1356.
20. Asakura A., et al., Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic and adipogenic differentiation. Differentiation (2001) 68; 245-253.
21. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387-403.
22. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256-2259.
23. Martin-Rendon E, Watt SM. Stem cell plasticity. Br J Haematol 2003; 122: 877-891.
24. Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL. Toward regenerative medicine. Immunity 2001; 14: 425-436.
25. Bishop AE, Butteri LDK, Polak JM. Embrionic stem cells. J Pathol 2002; 197:424-9.
26. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol 2002; 197:441-56.
27. Björklund A, Svendsen CN. Chimeric stem cells. Trends in molecular medicine 2001;7:144-6.
28. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 92(5520): 1389-94.
29. Wells WA. Is transdifferentiation in trouble? J Cell Biol 2002; 157: 15-18.
30. Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7: 393-395.
31. Abkowitz JL. Can human hematopoietic stem cells become skin, gut, or liver cells? N Engl J Med 2002; 346: 770-772.
32. Körbling M, Estrov Z. Adult stem cells for tissue repair – A new therapeutic concept? N Engl J Med 2003; 349:570-82.
33. Quesenberry PJ, Colvin GA, Lambert JF. The chiaroscuro stem cell: a unifed stem cell theory. Blood 2002; 100:4266-71.
34. Verfaillie CM, Pera MF, and Lansdorp PM. Stem cells: Hype and reality. Hematology 2002; 1:369-91.
35. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107:929-34.
36. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9:702-12.
37. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismarched bone marrow transplantation patients. Circulation 2003; 107:1247-9.
38. Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002; 197:519-26.
39. K. Iohara, L. Zheng, M. Ito, A. Tomokiyo, K. Matsushita, and M. Nakashima. Side Population Cells Isolated from Porcine Dental Pulp Tissue with Self-Renewal and Multipotency for Dentinogenesis, Chondrogenesis, Adipogenesis, and Neurogenesis. Stem Cells, 2006; 24(11): 2493 – 2503.
40. P. G. Robey and P. Bianco The use of adult stem cells in rebuilding the human face. J Am Dent Assoc, July 1, 2006; 137(7): 961 – 972.
41. K. Iohara, M. Nakashima, M. Ito, M. Ishikawa, A. Nakasima, and A. Akamine Dentin Regeneration by Dental Pulp Stem Cell Therapy with Recombinant Human Bone Morphogenetic Protein 2
J. Dent. Res, 2004; 83(8): 590 – 595.
42. M. Miura, S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey, and S. Shi SHED: Stem cells from human exfoliated deciduous teeth PNAS, May 13, 2003; 100(10): 5807 – 5812.
43. B. L. PIHLSTROM and L. TABAK The National Institute of Dental and Craniofacial Research: Research for the practicing dentist
J Am Dent Assoc, June 1, 2005; 136(6): 728 – 737.
44. A. Stokowski, S. Shi, T. Sun, P. M. Bartold, S. A. Koblar, and S. Gronthos EphB/Ephrin-B Interaction Mediates Adult Stem Cell Attachment, Spreading, and Migration: Implications for Dental Tissue Repair Stem Cells, January 1, 2007; 25(1): 156 – 164.
45. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002 81:531–535.
46. Y. Miura, Z. Gao, M. Miura, B. -M. Seo, W. Sonoyama, W. Chen, S. Gronthos, L. Zhang, and S. Shi Mesenchymal Stem Cell-Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor Resource Stem Cells, November 1, 2006; 24(11): 2428 – 2436.
47. M Miura, S Gronthos, M Zhao, and Songtao Shi, SHED: Stem cells from human exfoliated deciduous teeth. Cell Biology 2003. 100 (10) 5807-5812.
48. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000 97: 13625–13630.
49. J. Chang, C. Zhang, N. Tani-Ishii, S. Shi, and C. -Y. Wang NF- {kappa} B Activation in Human Dental Pulp Stem Cells by TNF and LPS J. Dent. Res., November 1, 2005; 84(11): 994 – 998.
50. Liu, W. Li, C. Gao, Y. Kumagai, R.W. Blacher, and P.K. DenBesten
Dentonin, a Fragment of MEPE, Enhanced Dental Pulp Stem Cell Proliferation J. Dent. Res., June 1, 2004; 83(6): 496 – 499.
51. S. Batouli, M. Miura,, J. Brahim, T.W. Tsutsui, L.W. Fisher, S. Gronthos, P. Gehron Robey, and S. Shi. Comparison of Stem-cell-mediated Osteogenesis and Dentinogenesis. J Dent Res 2003 82(12): 976-981.
52. H. Nakamura, L. Saruwatari, H. Aita, K. Takeuchi, and T. Ogawa
Molecular and Biomechanical Characterization of Mineralized Tissue by Dental Pulp Cells on Titanium J. Dent. Res., June 1, 2005; 84(6): 515 – 520.
53. G. Huang. Stem cells dental vs. pulp radicular treatment. Journal of Endodontics; Dec. 20, 2006. 78 (6) 312-14.
54. B.-M. Seo, M. Miura, W. Sonoyama, C. Coppe, R. Stanyon, and S. Shi
Recovery of Stem Cells from Cryopreserved Periodontal Ligament J. Dent. Res., October 1, 2005; 84(10): 907 – 912.
55. H. Yamazaki, M. Tsuneto, M. Yoshino, K. -I. Yamamura, and S. -I. Hayashi Potential of Dental Mesenchymal Cells in Developing Teeth Stem Cells, January 1, 2007; 25(1): 78 – 87.
56. P.R. Kramer, S. Nares, S.F. Kramer, D. Grogan, and M. Kaiser Mesenchymal Stem Cells Acquire Characteristics of Cells in the Periodontal Ligament in Vitro. J Dent Res2004 83(1): 27-34.
57. E Pak, R A Leakan, A Kingman ,   K M Yamada,   B J Baum and   E Mezey Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. The Lancet 2003; 361:1084-1088.
58. H Abukawa, M Shin, W. B Williams. Reconstruction of mandibular defects with autologous tissue-engineered bone. Journal of Oral and Maxillofacial Surgery May 2004, 66 (5) 601-606.
59. S.J. Hollister, R.A. Levy, T.M. Chu et al., An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg (2000), 29 (2) 67.
60. Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003 61:94–100.
61. A. Alhadlaq, J.J. Mao. Tissue-engineered Neogenesis of Human-shaped Mandibular Condyle from Rat Mesenchymal Stem Cells.J Dent Res 2003 82(12): 951-956.
62. W Sonoyama, Yi Liu, D Fang, T Yamaza, Byoung-Moo Seo, C Zhang, He Liu, Stan Gronthos, Cun-Yu Wang, Songtao Shi. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. En (2007-2-20) http: //www.plosone.org.

 

Copyright © 2000-2008, Revista 16 de Abril

Revista Científico Estudiantil de las Ciencias Médicas de Cuba

Fecha de actualización: 28 de abril de 2008

Webmaster: Pavel Polo Pérez

URL: http://www.16deabril.sld.cu

 

Autores:
Angélica María Cruañas Hernández *
Elizabeth Martínez Castro **
Carmen Lourdes Bermudo Cruz ***

Tutor:
Dr. Orlando Guerra Cobian ****

* Estudiante de 5to año de Estomatología. Alumna Ayudante de Cirugía Maxilofacial
** Estudiante de 3er año de Estomatología y Alumna Ayudante de Cirugía Maxilofacial
*** Estudiante de 3er año de Estomatología y Alumna Ayudante de Ortodoncia
**** Especialista I Grado Cirugía Maxilo Facial. Diplomado Educación Medica Superior. Profesor Asistente.

Instituto Superior de Ciencias Médicas de La Habana
Facultad de Estomatología
“Raúl González Sánchez”
Departamento de Cirugía. Ciudad de la Habana, 2007

 

 

Introducción

En los últimos años el término “célula madre” ha tomado gran importancia desde que la terapia génica y la clonación son temas de discusión en la literatura mundial. Desde que en 1998 se aislaran y cultivaran exitosamente células madre procedentes de embriones humanos, la literatura científica ha recogido exhaustivamente cada acción relacionada con estas, existiendo cerca de 125 000 publicaciones científicas biomédicas en estos últimos 25 años y unos 33 000 desde el año 2000 al actual.

De manera natural, los tejidos del cuerpo a lo largo de la vida sufren un desgaste, del que se defienden, y desarrollan una capacidad intrínseca de auto-renovar esos tejidos que se desgastan. De no existir esta renovación, se reduciría considerablemente la esperanza de vida de los seres vivos. La nueva medicina regenerativa, se propone reparar los tejidos dañados utilizando mecanismos similares a los que de forma natural usa el organismo para la renovación de las poblaciones celulares que van envejeciendo y que deben ser sustituidas por otras que suplen su función.

El sistema estomatognático no resulta ajeno a estos fenómenos patológicos o degenerativos, y estando asociado a múltiples funciones de desempeño concomitante, los tejidos bucales son blanco fácil de las entidades, pero dadas sus características de presentar elementos de las distintas estirpes celulares, tales como: una vascularización rica, la posibilidad de representar sus patrones reparativos, que han sido altamente estudiados, con posibilidades de reproducirlos xenológicamente, resulta propicio, con la medicina regenerativa, apreciar la cavidad bucal como fuente y asiento de los procederes biotecnológicos relacionados con la terapia celular, la ingeniería tisular y los bancos de tejidos. 1, 2, 3

Motivados por estas líneas de desarrollo, nos damos a la tarea de hacer la presente revisión bibliográfica y nos surge la interrogante: ¿resultan las células madre un método terapéutico, seguro y práctico? Como objetivo nos propusimos identificar el estado actual de las investigaciones con células madre presentes en la pulpa dental de dientes temporales, permanentes y ligamento periodontal, y sus perspectivas, para la aplicación clínica en la Ingeniería Tisular.

 

Desarrollo
Se realizó la presente revisión bibliográfica con el objetivo de conocer el estado actual de las investigaciones y aplicaciones de las células madre en el complejo bucal. Se estudiaron 62 artículos de fuentes primarias recopilados de forma electrónica y considerada de impacto científico. La medicina regenerativa es la disciplina médica que se ha basado fundamentalmente en los nuevos conocimientos sobre las células madre y en su capacidad de convertirse en células de diferentes tejidos. Se sustenta en la terapia celular, en la administración de elementos subcelulares y en la ingeniería de tejidos, conductas utilizadas para reemplazar por células sanas a las células dañadas por diversos procesos en determinados tejidos, propone reparar los tejidos dañados mediante mecanismos similares a los que de forma natural emplea el organismo para la renovación de las poblaciones celulares que van envejeciendo y que deben ser sustituidas por otras que suplen su función.1, 2,3

Los mecanismos que posee el organismo de regeneración, reparación y renovación de tejidos son limitados y dependientes de la rapidez de instauración del daño o degeneración. En 1916 Danchakoff describe la presencia de una célula como precursora de otras en la médula ósea, lo que fue confirmado posteriormente por Sabin y Maximow, constituyendo estos hallazgos las primicias de los sucesos asociados a las células madre.4
Una célula madre es una célula “genérica” que puede hacer copias exactas de sí misma indefinidamente. Además, una célula madre tiene la capacidad de producir líneas celulares especializadas para varios tejidos del cuerpo, tales como: músculo cardíaco, tejido cerebral, tejido hepático, fibras periodontales y dentina, entre otras; asimismo se le han añadido dos propiedades funcionales, con la capacidad de implantación persistente, tanto en tejidos dañados como en sanos. 5, 6, 7,8
En un inicio se utilizó el mismo término que en inglés: Stem cells, pero más paulatinamente se han introducido diversos nombres que han estado en dependencia más bien del criterio del traductor. Así, encontramos acepciones como estas: células troncales, células tronco, células precursoras, células progenitoras y células estaminales.9, 10 Por otra parte, la célula progenitora o precursora puede considerarse una célula que ya ha alcanzado una diferenciación parcial y ha perdido la capacidad pluripotencial de la célula madre.9

Todas las células somáticas del organismo tienen, en principio, el mismo contenido genético (el mismo genoma, que es la totalidad de genes de un organismo), no obstante, lo que distingue las células de una estirpe de las células de otra estirpe no es, por tanto, la información genética de que disponen, sino la expresión diferencial de unos u otros genes (la expresión de los genes se traduce en la síntesis de proteínas); así, las células que expresan determinados genes, producen unas proteínas específicas. Lo que determina qué genes expresa una célula y qué genes no expresa, no es el contenido genético de la célula, sino factores externos al genoma, entre los que se hallan el microambiente en que vive la célula, que contiene gran cantidad y diversidad de señales que le indican y le ordenan cuál debe ser su patrón de comportamiento. Estas señales se denominan globalmente factores epigenéticos (que pueden ser factores externos a la célula o bien factores intracelulares).11-16

 

Existen dos tipos básicos
Células madre embrionarias (1981): Deriva del embrión de los mamíferos en su etapa de blastocisto, que se obtienen de fetos abortados Son útiles para propósitos médicos o para investigación, porque pueden producir células para casi todos los tejidos del cuerpo. Deriva del embrión de los mamíferos en su etapa de blastocisto. Después de la penetración del espermatozoide, el óvulo fecundado adquiere la condición de cigoto, en el que durante su recorrido por la trompa de Falopio, se van produciendo sucesivamente distintos períodos de división celular que incrementan rápidamente el número de sus células, las cuales reciben el nombre de blastómeros. Aproximadamente a los 3 días, el embrión tiene el aspecto de una esfera compacta que se denomina mórula y que contiene de 12 a 16 blastómeros. Alrededor de los 4 días llega a la cavidad uterina, y sobre los 5, comienza a introducirse líquido en su interior para formar una cavidad: el blastocele. En esta etapa, el cigoto se llama blastocisto y posee en uno de sus polos una agrupación celular que recibe el nombre de masa celular interna o embrioblasto, que forma una prominencia dentro del blastocele. Células de la masa interna no mantienen indefinidamente in vivo su capacidad de generación de cualquier tipo celular, pues estas se van diferenciando progresivamente en los diversos tipos celulares durante la fase intrauterina del desarrollo. Sin embargo, cuando se extraen de su ambiente embrionario natural y se cultivan in vitro, sí son capaces de proliferar ilimitadamente, y a su vez, mantener su potencial de generar células capaces de diferenciarse en cualquiera de los tejidos del organismo. En este estado es que se califican como células madre embrionarias. Puesto que estas células proceden de un embrión humano vivo, desde el primer momento su manipulación y destino se ha enfrentado en diferentes países a una fuerte oposición, basada principalmente en aspectos éticos, religiosos y políticos. El primer reporte acerca del aislamiento de células madre embrionarias provenientes de blastocistos humanos data de 1994, cuando se determinó que estas células in vitro se diferencian espontáneamente en estructuras multicelulares conocidas como “cuerpos embrionarios”, que contienen elementos de las tres capas germinales a partir de las cuales se pueden forman varios tipos de células como cardiomiocitos, neuronas y progenitores hematopoyéticos, entre otros .17- 25

Células madre germinales (EG). No es tipo básico. Se localizan en la cresta germinal de los fetos, lugar donde se produce la diferenciación de la línea germinal. Algunos las consideran también embrionarias.

Células madre adultas o somáticas: se ha definido como una célula especializada dentro de la organización de las células de un tejido específico de un organismo ya formado, que está restringida en su capacidad de diferenciación y es capaz únicamente de generar células del tejido que representa, a las que debe recambiar de forma natural, aunque han mostrado en determinadas condiciones, capacidad para diferenciarse en células de diferentes linajes, así las células madre hematopoyéticas son capaces de diferenciarse en diversos tejidos, entre ellos: endotelio, músculo cardíaco, músculo estriado, hepatocitos, neuronas, piel e intestino. El término “célula madre adulta” puede confundir, porque tanto los niños como los adultos las tienen. Se ha señalado la existencia de células madre adultas en varios sitios del organismo, que incluyen: médula ósea, sangre periférica, sangre del cordón umbilical, cerebro, médula espinal, grasa, pulpa dentaria, vasos sanguíneos, músculo esquelético, piel, tejido conjuntivo, córnea, retina, hígado, conductos pancreáticos, folículo piloso, tejido gastrointestinal y pulmón.

Las células madre también se han clasificado, según su potencialidad celular, en: totipotentes, pluripotentes y multipotentes.

Totipotentes: son aquellas que en las condiciones apropiadas son capaces de formar un individuo completo, pues pueden producir tejido embrionario y extra-embrionario.

Pluripotentes: son las que tienen la habilidad de diferenciarse a tejidos procedentes de cualquiera de las 3 capas embrionarias, aunque estas células por sí solas no pueden producir un individuo, ya que necesitan el trofoblasto; sí originan todos los tipos de células y tejidos del organismo. En esta categoría estarían las células provenientes de la masa celular interna del blastocisto.

Multipotentes:
que pueden diferenciarse en distintos tipos celulares procedentes de la misma capa embrionaria, lo que las capacitaría para la formación de tipos celulares diferentes, pero no de todos. 26-38

CÉLULAS MADRE EN LA CAVIDAD BUCAL
Se han identificado 4 grupos principales de células madre en la cavidad bucal, de sus tejidos específicos.39, 40, 41,42
– Células Madre en pulpas de dientes temporales (SHED CELLS).
– Células Madre en pulpas de dientes permanentes (DPSCs).
– Células Madre presentes en espacios periodontales (PDLSCs)
– Células Madre de la mucosa bucal

Células madre en pulpas de dientes temporales (SHED CELLS)
Songtao Shi, odontopediatra del Instituto Nacional Dental de Investigaciones Craneofaciales de Bethesda, Maryland, en sus experimentos iniciales utilizó un diente de su hija. “Una vez que se le cayó, comenzamos a mirarlo cuidadosamente”, dijo Shi. Al observar en el mismo, tejido de color rojo, lo extrajo y lo examinó en el laboratorio, y de allí logró extraer células madre vivas. 43,44

Aisló células madre adultas en dientes temporales de niños de 7 u 8 años de edad. Previamente había aislado células madre en dientes permanentes y amplió el estudio a los deciduales. Los dientes fuentes de células, fueron mantenidos por los padres de los niños (en leche y refrigerados), para garantizar la viabilidad celular. Las pulpas dentales se extrajeron y manipularon enzimáticamente, obteniéndose cultivos de células madre. Se encontró más frecuencia en los incisivos que en los molares de células madre y que entre un 12 y un 20% de las células en pulpas de dientes deciduales eran células totipotenciales. Estas células fueron denominadas SHED CELLS (células madre exfoliadas de dientes deciduales).
Las SHED CELLS, se sometieron a factores tisulares de crecimientos diferenciados en cultivos y se logró la diferenciación en células nerviosas, adipocitos y odontogénicas, identificadas clínica e inmunofenotípicamente. Estas células SHED, fueron trasplantadas a tejidos cerebral y dérmico en ratas inmunocomprometidas y desarrollaron características nerviosas, muy replicables y viables. Así, estas células, presentes en todos los individuos, resulta una fuente segura de un material replicable para producir dentina y tejido neurológico autogénico.45, 46,47

Células madre en pulpas de dientes permanentes (DPSCs)
Las población de células madre adultas en pulpas dentales de dientes permanentes también resultan muy evidentes y estas se han denominado DPSCs. El rasgo más llamativo de estas células es su capacidad extrema de regenerar el complejo pulpa- dentina compuesto por una matriz mineralizada con túbulos lineales, con odontoblastos y tejido de contenido fibroso, rico en vasos sanguíneos, con semejante disposición al complejo dentina-pulpa adulto. Se ha encontrado también que las DPSCs son capaces, al igual que los osteoblastos, de expresar marcadores óseos, tales como: sialoproteínas óseas, fosfatasa alcalina, colágeno tipo I y osteocalcina. La diferenciación a esta línea ósea es regulada por la familia osteo-reguladora de TGFß y las citoquinas. Así existe gran similitud entre la expresibilidad genética de las células madre de pulpas de dientes permanentes y las células madre de estroma medular, precursoras de los osteoblastos (BMSSCs) 48, 49,50

La principal fuente de células madre adultas de dientes permanentes son los terceros molares, extraíbles entre los 19 y 29 años de edad por diferentes razones. Estas células madre tienen la ventaja de ser autógenas y de baja inmunogenicidad. Las DPSCs, incluso pueden experimentar adipogénesis, a pesar de que en la pulpa dental estos elementos tisulares no se presentan. Mediante medios enriquecidos adipo-inductores pueden generar adipocitos ácidos grasos rojos o positivo, correlacionando esta conversión fenotípica con una expresión del gen temprano, marcador maestro, PPA?2 y el tardío marcador de la lipasa lipoproteica.51

Songtao Shi, estudió el comportamiento de las células madre procedentes de la papila apical, tanto in vitro, como en modelos animales (ratones). Una vez identificadas las células madre apropiadas para crear una nueva raíz, estos investigadores reemplazaron un incisivo de un cerdo enano (tienen una estructura dental parecida a la humana) por una estructura en forma de raíz dental de material cerámico (hydroxyapatite/tricalcium phosphate o HA/TCP) que hacía de molde y de vehículo portador de células madre de papilas apicales procedentes de muelas del juicio, de humanos jóvenes de entre 18 y 20 años de edad.

Tres meses más tarde de implantar estas células los investigadores lograron encajar en la cuenca del antiguo incisivo una corona sintética de porcelana sobre la nueva raíz remineralizada, que contaba con nuevos ligamentos desarrollados allí mismo. Pudieron demostrar, además, que los nuevos tejidos formados eran humanos. Después de seis meses de la implantación los investigadores comprobaron que, aunque el nuevo diente no era tan resistente como los naturales, tenían la suficiente calidad como para cumplir su función. 52

George T. J. Huang, investigador, endodoncista y profesor asociado del Colegio de Cirugía Dental de la Universidad de Maryland, en la edición de diciembre de 2006 del Journal of Endodontics, revisó cuatro casos de caries en preadolescentes tratados por odontólogos taiwaneses que limpiaron el tejido dental infectado de dientes permanentes jóvenes. Pero no lo extrajeron, sino que dejaron las células madre de la pulpa en su sitio. Estas células madre continuaron ayudando a los dientes a recuperarse, regenerarse y madurar, para convertirse en dientes fuertes y sanos.

Los investigadores recalcaron que las células madre en cuestión son células madre adultas (no las controvertidas células que provienen de embriones), que tienen todos los niños y adultos. Además, el procedimiento de limpieza que utilizaron para reemplazar el tratamiento de canal tradicional se basa en la aplicación de una sustancia blanqueadora, no en la introducción de células madre derivadas externamente. Las cámaras de la pulpa de los dientes de los niños que tenían problemas se irrigaron con 20 ml. de una solución al 2.5 por ciento de hipoclorito de sodio, una sustancia química que se usa con frecuencia como desinfectante y blanqueador. Luego de la limpieza, se secaron los dientes y se llenaron con una pasta de hidróxido de calcio, un agente antimicrobiano removible que actuó como biomodulador. No hubo complicaciones y el único efecto secundario observado fue el angostamiento del espacio del conducto de las raíces. Huang y sus colegas llegaron a la conclusión de que los hallazgos “sugieren de manera contundente un cambio de paradigma” en el tratamiento de los dientes permanentes inmaduros, con énfasis en estimular el proceso natural de regeneración del tejido en lugar de interrumpirlo con materiales de empaste artificiales.53

 

Células Madre presentes en espacios periodontales (PDLSCs)
La reparación del ligamento periodontal parece involucrar las células madre presentes en el mismo para la formación de fibroblastos, cementoblastos y osteoblastos. Estas células aparecen en racimos en la vecindad de los vasos sanguíneos periodontales y presentan características semejantes a las células madre embrionarias.54, 55

Para su obtención, las muestras dentales fueron tomadas de donantes hembras previo consentimiento; los dientes extraídos fueron lavados con solución salina buffer fosfato 3x, con estreptomicina y penicilina, sujetados mediante clanes en las coronas, para lo cual se usó una pieza de mano a baja velocidad y un disco de diamante con adecuada irrigación. A continuación se efectuó una sección de la superficie dental, con profundidad de 0.5mm y se colocó en un medio esencial con 10% de suero de ternero enriquecido, antibiótico y a una atmósfera CO2 al 5%.Después de 10 días de cultivo las células proliferativas tomaron varias morfologías.

Las células con morfología semejante a ligamento periodontal fueron diluidas y cultivadas en láminas de vidrio específicas, cultivadas por 24 horas y tratadas inmunohistoquímicamente. Las células neoformadas debían cumplir los criterios de positividad para los marcadores CD105, CD166, CD29, CD44, representativos de las células madre mesenquimatosas y negativos para marcadores CD14, CD34, y CD45, referidos estos a células hematopoyéticas. Además de estos requisitos, debían tener plasticidad para formar líneas condrogénicas, osteogénicas, y adipogénicas, según el medio enriquecido que se iba a utilizar. Las células madre obtenidas se colocaron en un medio, conjugándose con células habituales del ligamento, en un medio que contenía suero de ternero fetal al 10% y antibióticos. Transcurridos 7 días se identifico inmunohistoquímicamente que el ligamento periodontal adulto neoformado expresaba colágeno III, sin embargo, las células presentaban una morfología más fusiforme. Los niveles de osteocalcina obtenidos fueron menores que los del ligamento normal, las sialoproteínas óseas también fueron identificadas.56

 

Células Madre de la Mucosa Bucal
Los queratocitos bucales también han sido aislados y cultivados para expresar su totipotencialidad y fueron recopilados de la mucosa oral, cultivados en suero libre de cualquier producto de otra procedencia animal; después de 7 días, se agruparon por morfología y tamaño, seleccionándose los mayores. Se utilizó la novedosa técnica de filtración gravitacional para el sorteo celular asistido (GACS), estas células se sembraron en dermis de cadáver humano de un 1 cm. cuadrado de área y luego de cuatro días en medios neutros se obtuvo una monocapa de células, que fue colocada en medio enriquecido y se obtuvo en epitelio estratificado de estructura semejante a la dermis del cadáver, que llegó a tener a los 13 días una extensión de 4 cm.

Esta investigación resultó la base para el aislamiento e inclusión de células madre de la mucosa oral, en mallas de piel sintética, para la reparación de defectos por lesiones cutáneas que tuvieron baja inmunogenicidad, sin contractura cicatrizal después de ser evaluadas por 3 años.57
Reconstrucciones óseas de cuerpos mandibulares con células madre
Los procedimientos reconstructivos de los huesos de la región facial para defectos postraumáticos, tumorales o congénitos, pueden requerir de tejidos sustitutivos, en ocasiones de grandes dimensiones, los que generan defectos en las estructuras donantes. Esta situación puede ser eliminada mediante el uso de la Ingeniería Tisular.

Novedosos diseños de piezas reconstructivas sembradas con células madre se han establecido, con diferentes modelos, según los defectos. Uno de los primeros modelos utilizados se ha denominado modelo minipig (porcino básico que utiliza células madre mesenquimatosas, aisladas, de íleo de cerdo) cultivadas y sembradas en tableros de acido poli- DL-láctico-coglicólico, siendo esterilizadas en iodopovidona al 10%. Esta estructura conformada se colocó en un biorreactor y fue incubada por 10 días en suplementos y medios osteogénicos. Examinado previamente en animales, se crearon cuatro defectos de 2×2 cm en mandíbulas porcinas y se dispusieron en los defectos los tableros creados con sus contenidos celulares. Después de 6 semanas se evaluó el proceso reparativo. Se apreció radiográficamente una zona de radiolucidez con focos de radiopacidad. Histológicamente se determinaron osteoblastos y osteocitos maduros con una red fibrilar colágena densa y focos de endotelio vascular. En otros defectos en los que solo se colocó el tablero poliglicólico solamente se apreció el crecimiento del puente óseo, con un área central poliglicólica. En estudios continuados se han sometido los tableros celulares después de 4 semanas a distracción osteogénica, lográndose por la plasticidad celular, remodelado óseo.58, 59

Reconstrucciones condilares
La articulación témporo-mandibular resulta muy susceptible de afecciones traumáticas, infecciosas o degenerativas que produzcan la destrucción de sus elementos articulares. Para su reparación se han implementado numerosas técnicas e introducido novedosos biomateriales. Se han realizado estudios en ratas, con el objetivo de lograr a expensas de células madre mesenquimatosas, un cóndilo mandibular, semejante al humano, encapsulado en un polímero biocompatible.60, 61

Las células madre mesenquimatosas adultas (MSCs) fueron obtenidas de fémur y tibia de ratas, con aguja 18 y jeringuillas. Colocadas en suero fetal bovino 10%, las células medulares fueron centrifugadas, resuspendidas en suero y cultivadas por 2 semanas. Las células madre mesenquimatosas fueron tripsinizadas y cultivadas para lograr cultivos específicos, y tratadas por separado, con medios osteogénicos (dexametasona, glicerol fosfato y ácido ascórbico 2 fosfato) y condrogénicos (incluyó los anteriores y TGF-ß1).

Después de cultivadas las células fueron colocadas en polidiacrilato disuelto en PBS, suplementados con penicilina y estreptomicina. La pieza obtenida fue sepultada en el dorso de ratas con anestesia local y previa inmunodepresión de la misma, nueve semanas después de la implantación el patrón fue escindido del dorso del animal, separándose cuidadosamente la capsula fibrosa que lo rodeaba. Luego se lavó con mucha precaución con PBS y se fijó en formalina al 10%, parafina; seguidamente fue seccionada en cortes de 5 micrones paralelos a su eje axial. También fueron colocadas en distintas tinciones para tipos celulares específicos. La masa neocondilar era firme, opaca y semejante al molde de cóndilo humano que la incluía. Se encontraron capas estratificadas de condrocitos y osteocitos, con condroblastos y osteoblastos asociados con actividad celular adecuada; se identificó también matriz extracelular y una matriz 0 positiva de células semejantes a condrocitos.61

Reconstrucciones radículares dentarias
Resulta uno de los trabajos más recientes de Ingeniería Tisular, publicado en diciembre de 2006 por la revista Plos One de la Public Library Science, norteamericana. La publicación constituye el pilar de futuros trabajos, en los cuales el profesor Songtao Shi, fundamenta que es posible la regeneración dental a partir de células madre. El resultado final del estudio es la formación de un muñón radicular dental incisivo que puede servir de soporte para una corona sintética de porcelana.62

Las células madre resultaron obtenidas de los molares de cerdos y cultivadas con medios nutritivos y de enriquecimiento para formación del complejo pulpa-dentina, para línea osteoblástica y fibroblástica. Después de lograr colonias con las densidades correspondientes se trasplantaron en un medio de suero de ternero fetal a un molde de hidroxiapatita-fosfato tricálcico. Las formaciones radículares neoformadas fueron implantadas en los alvéolos residuales, después de la extracción del diente afectado; el muñón implantado fue protegido con férula, en un cerdo inmunodeprimido previamente. Después de tres meses se colocó la corona artificial brindando carga a la formación radicular.62 Fue identificado radiográficamente un espacio periodontal adecuado y una formación dentina con densidad adecuada.

Conclusiones

1. Las células madre dentales SHED CELLS, DPSCs y PDLSCs, resultan un material disponible y autólogo listo para utilizarse en procederes reparativos de los tejidos dentarios.
2. Las células madre adultas (DPSCs), dado su potencial de transdiferenciación, pueden ser utilizadas para la reparación de los tejidos nervioso, cardíaco y óseo.
3. Las células madre periodontales (PDLSCs) evidenciaron una fuerte plasticidad al formar de manera adecuada, el complejo cemento-fibras periodontales, manteniendo su expresión histológica y enzimática.
4. Los medios de enriquecimiento específicos, modelos de soportes y marcadores enzimáticos deben ser incrementados par lograrse más especificidad.
5. No existen aún evidencias de los efectos locales y sistémicos a mediano y largo plazos, de la terapia celular y de las modificaciones de los patrones genéticos celulares que estas pudieran generar.

Referencias Bibliográficas
1. López Moratalla N. La racionalidad terapéutica en la medicina regenerativa con células troncales embrionarias o de adulto. Anal Real Acad Nal Farm 2003; 69:21-45.
2. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414:92-7.
3. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med 2003; 349:267-74.
4. Danchakoff V. Origin of the blood cells: development of the haematopoietic organs and regeneration of the blood cells from the standpoint of the monophyletic school. Anat Rec. 1916, 10: 397-413.
5. Körbling M, Estrov Z. Adult stem cells for tissue repair – A new therapeutic concept? N Engl J Med 2003; 349:570-82.
6. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 2005; 11: 228-232.
7. Chan J, O’Donoghue K, de la Fuente J, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005; 23: 93-102.
8. Wilmut I. Human cells from cloned embryos in research and therapy. BMJ 2004; 328: 415-416.
9. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002; 12: 502-508.
10. Clarke D, Frisen J. Differentiation potential of adult stem cells. Curr Opin Genet Dev 2001; 11: 575-580.
11. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002; 416:545-548.
12. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49.
13. Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, Fauza DO. Fetal tissue engineering from amniotic fluid. J AmColl Surg 2003; 196:592-7.
14. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, Zam-belli Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, Chaubert P, Gerber S, Scaletta C, et al. Tissue engineered fetal skin con-structsfor paediatric burns. Lancet 2005; 366:840-2.
15. Daley G (2004). Missed opportunities in embryonic stem-cell research. N Engl J Med 351:627.
16. Aznar, J., Alternativas a la utilización de células madre embrionarias con vista a la medicina regenerativa y reparadora, en: (2002-02-24)

http://www.bioeticaweb.com/Inicio_de_la_vida/Aznar_altertantiv_cel_mad.htm.

17. McKinell, R.G., Cloning of Homo sapiens? No! Differentiation (2002) 69; 150-153.
18. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cells. Stem Cells 2001; 19: 193-204.
19. Cowan CA, Klimanskaya I, and McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004; 350: 1353-1356.
20. Asakura A., et al., Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic and adipogenic differentiation. Differentiation (2001) 68; 245-253.
21. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387-403.
22. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256-2259.
23. Martin-Rendon E, Watt SM. Stem cell plasticity. Br J Haematol 2003; 122: 877-891.
24. Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL. Toward regenerative medicine. Immunity 2001; 14: 425-436.
25. Bishop AE, Butteri LDK, Polak JM. Embrionic stem cells. J Pathol 2002; 197:424-9.
26. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol 2002; 197:441-56.
27. Björklund A, Svendsen CN. Chimeric stem cells. Trends in molecular medicine 2001;7:144-6.
28. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 92(5520): 1389-94.
29. Wells WA. Is transdifferentiation in trouble? J Cell Biol 2002; 157: 15-18.
30. Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med 2001; 7: 393-395.
31. Abkowitz JL. Can human hematopoietic stem cells become skin, gut, or liver cells? N Engl J Med 2002; 346: 770-772.
32. Körbling M, Estrov Z. Adult stem cells for tissue repair – A new therapeutic concept? N Engl J Med 2003; 349:570-82.
33. Quesenberry PJ, Colvin GA, Lambert JF. The chiaroscuro stem cell: a unifed stem cell theory. Blood 2002; 100:4266-71.
34. Verfaillie CM, Pera MF, and Lansdorp PM. Stem cells: Hype and reality. Hematology 2002; 1:369-91.
35. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107:929-34.
36. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9:702-12.
37. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismarched bone marrow transplantation patients. Circulation 2003; 107:1247-9.
38. Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002; 197:519-26.
39. K. Iohara, L. Zheng, M. Ito, A. Tomokiyo, K. Matsushita, and M. Nakashima. Side Population Cells Isolated from Porcine Dental Pulp Tissue with Self-Renewal and Multipotency for Dentinogenesis, Chondrogenesis, Adipogenesis, and Neurogenesis. Stem Cells, 2006; 24(11): 2493 – 2503.
40. P. G. Robey and P. Bianco The use of adult stem cells in rebuilding the human face. J Am Dent Assoc, July 1, 2006; 137(7): 961 – 972.
41. K. Iohara, M. Nakashima, M. Ito, M. Ishikawa, A. Nakasima, and A. Akamine Dentin Regeneration by Dental Pulp Stem Cell Therapy with Recombinant Human Bone Morphogenetic Protein 2
J. Dent. Res, 2004; 83(8): 590 – 595.
42. M. Miura, S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey, and S. Shi SHED: Stem cells from human exfoliated deciduous teeth PNAS, May 13, 2003; 100(10): 5807 – 5812.
43. B. L. PIHLSTROM and L. TABAK The National Institute of Dental and Craniofacial Research: Research for the practicing dentist
J Am Dent Assoc, June 1, 2005; 136(6): 728 – 737.
44. A. Stokowski, S. Shi, T. Sun, P. M. Bartold, S. A. Koblar, and S. Gronthos EphB/Ephrin-B Interaction Mediates Adult Stem Cell Attachment, Spreading, and Migration: Implications for Dental Tissue Repair Stem Cells, January 1, 2007; 25(1): 156 – 164.
45. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002 81:531-535.
46. Y. Miura, Z. Gao, M. Miura, B. -M. Seo, W. Sonoyama, W. Chen, S. Gronthos, L. Zhang, and S. Shi Mesenchymal Stem Cell-Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor Resource Stem Cells, November 1, 2006; 24(11): 2428 – 2436.
47. M Miura, S Gronthos, M Zhao, and Songtao Shi, SHED: Stem cells from human exfoliated deciduous teeth. Cell Biology 2003. 100 (10) 5807-5812.
48. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000 97: 13625-13630.
49. J. Chang, C. Zhang, N. Tani-Ishii, S. Shi, and C. -Y. Wang NF- {kappa} B Activation in Human Dental Pulp Stem Cells by TNF and LPS J. Dent. Res., November 1, 2005; 84(11): 994 – 998.
50. Liu, W. Li, C. Gao, Y. Kumagai, R.W. Blacher, and P.K. DenBesten
Dentonin, a Fragment of MEPE, Enhanced Dental Pulp Stem Cell Proliferation J. Dent. Res., June 1, 2004; 83(6): 496 – 499.
51. S. Batouli, M. Miura,, J. Brahim, T.W. Tsutsui, L.W. Fisher, S. Gronthos, P. Gehron Robey, and S. Shi. Comparison of Stem-cell-mediated Osteogenesis and Dentinogenesis. J Dent Res 2003 82(12): 976-981.
52. H. Nakamura, L. Saruwatari, H. Aita, K. Takeuchi, and T. Ogawa
Molecular and Biomechanical Characterization of Mineralized Tissue by Dental Pulp Cells on Titanium J. Dent. Res., June 1, 2005; 84(6): 515 – 520.
53. G. Huang. Stem cells dental vs. pulp radicular treatment. Journal of Endodontics; Dec. 20, 2006. 78 (6) 312-14.
54. B.-M. Seo, M. Miura, W. Sonoyama, C. Coppe, R. Stanyon, and S. Shi
Recovery of Stem Cells from Cryopreserved Periodontal Ligament J. Dent. Res., October 1, 2005; 84(10): 907 – 912.
55. H. Yamazaki, M. Tsuneto, M. Yoshino, K. -I. Yamamura, and S. -I. Hayashi Potential of Dental Mesenchymal Cells in Developing Teeth Stem Cells, January 1, 2007; 25(1): 78 – 87.
56. P.R. Kramer, S. Nares, S.F. Kramer, D. Grogan, and M. Kaiser Mesenchymal Stem Cells Acquire Characteristics of Cells in the Periodontal Ligament in Vitro. J Dent Res2004 83(1): 27-34.
57. E Pak, R A Leakan, A Kingman ,   K M Yamada,   B J Baum and   E Mezey Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. The Lancet 2003; 361:1084-1088.
58. H Abukawa, M Shin, W. B Williams. Reconstruction of mandibular defects with autologous tissue-engineered bone. Journal of Oral and Maxillofacial Surgery May 2004, 66 (5) 601-606.
59. S.J. Hollister, R.A. Levy, T.M. Chu et al., An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg (2000), 29 (2) 67.
60. Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003 61:94-100.
61. A. Alhadlaq, J.J. Mao. Tissue-engineered Neogenesis of Human-shaped Mandibular Condyle from Rat Mesenchymal Stem Cells.J Dent Res 2003 82(12): 951-956.
62. W Sonoyama, Yi Liu, D Fang, T Yamaza, Byoung-Moo Seo, C Zhang, He Liu, Stan Gronthos, Cun-Yu Wang, Songtao Shi. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. En (2007-2-20) http: //www.plosone.org.

 

Copyright © 2000-2008, Revista 16 de Abril

Revista Científico Estudiantil de las Ciencias Médicas de Cuba

Fecha de actualización: 28 de abril de 2008

Webmaster: Pavel Polo Pérez

URL: http://www.16deabril.sld.cu v

0

RESUMEN

La medicina regenerativa es una rama de la medicina que se ha desarrollado considerablemente en los últimos años. Los avances en este campo se han vinculado estrechamente con los nuevos conocimientos adquiridos sobre las células madre y su capacidad de convertirse en células de diferentes tejidos. Esta medicina se sustenta en conductas adoptadas por el organismo para remplazar por células sanas a las dañadas por diversos procesos en determinados tejidos. Las medidas terapéuticas empleadas pueden incluir trasplante de células madre, el uso de moléculas solubles, terapia génica e ingeniería de tejidos. En la actualidad, el método más empleado es el trasplante de células madre adultas. Sin embargo, todavía no se conocen bien los mecanismos mediante los cuales las células trasplantadas podrían mejorar o promover la regeneración de los tejidos. Para explicar estos mecanismos se han sugerido varias hipótesis, que incluyen la transdiferenciación celular, la fusión de células y los efectos secundarios a la liberación por las células de diferentes moléculas solubles con acciones específicas; además de los efectos autocrinos y paracrinos que pueden tener estos factores solubles se sugiere la existencia también de una acción telecrina. Probablemente se ejecute más de uno de estos mecanismos.

Medicina Regenerativa y células madre. Mecanismos de acción de las células madre adultas. Rev Cub Hematol. Inmunol y Med Trans,2009. Dr P. Hernández