Celebran en Gramados, Rio Grande do Sul, el V Congreso Brasilero de Células Tronco y Terapia Celular
Del 29 de septiembre al 3 de octubre se realizó el V Congreso Brasilero de Células Tronco y Terapia Celular, en el que se presentaron numerosos y novedosos trabajos de esta especialidad. Además de conferencias y actualizaciones por destacados especialistas internacionales.
Cuba fué invitada a participar y los doctores Porfirio Hernández y Elvira Dorticós tuvieron un activo intercambio con los profesionales allá presentes.
El Dr. Hernández , además brindó una conferencia sobre Medicina Regenerativa en Cuba, estado actual y aplicaciones que despertó gran interés en los participantes.
Este congreso constituyó , a su vez, un punto de encuentro para estrechar las relaciones de colaboración entre ambos países.
Científicos italianos descubrieron células estaminales de la médula que migran para reparar el hígado cuando se encuentra muy comprometido por enfermedades o no puede recuperarse por haber sido sometido a cirugías. Estas células viajan en la sangre hasta el órgano y lo ayudan a regenerarse, según el descubrimiento de un equipo liderado por el profesor Antonio Gasbarrini, de la Universidad Católica del Sacro Cuore, de Roma.
El estudio fue publicado por la revista Digestive and Liver Disease, y fue elaborado en colaboración con Gennaro Nuzzo y Felice Giuliante, de la Unidad Operativa de Cirugía general Hepato-Biliar del hospital romano Gemelli.
El hígado tiene su reserva interna de células estaminales capaces de regenerarlo, pero este proceso regenerativo solo es posible cuando el tejido hepático está sano o al menos no muy comprometido por enfermedades como cirrosis o cáncer.
En ese caso, si el hígado está demasiado dañado hacer la extracción hepática es muy riesgoso porque el órgano podría no ser capaz de autoregenerarse.
Pero los expertos, que estudiaron 29 pacientes operados para removerles parte del hígado, descubrieron un truco: células de la médula ósea, es decir las estaminales que dan vida a la sangre, migran al hígado y lo ayudan a curarse, cuando no lo puede hacer por sí solo.
“El descubrimiento es importante, afirma Gasbarrini, porque indica el camino hacia nuevas terapias para estimular el proceso natural de reparación del hígado asistido por las células estaminales de la médula ósea”.
De este modo, explican María Assunta Zocco y Annachiara Piscaglia, del Instituto de Patología de la Universidad Católica, que llevaron adelante la investigación, se podrá curar con la extracción quirúrgica del hígado a más personas”.
“Se podra intervenir inclusive a muchos de los que hoy son considerados inoperables, porque tienen un tejido hepático muy comprometido”, agregaron las investigadoras.
Esta no es la única función que las células estaminales de la médula ósea realizan, aunque la particularidad de este caso es que migran por sí solas hacia el hígado.
Un equipo de científicos argentinos consiguió que el páncreas de un paciente diabético produzca insulina al implantarle en los vasos sanguíneos células extraídas de su propia médula ósea.
El equipo médico, integrado por investigadores de la Universidad Nacional de Rosario, 300 kilómetros al norte de Buenos Aires, no intervino quirúrgicamente al enfermo, ya que el implante de células estaminales se realizó por vía intravenosa.
Estas investigaciones no se enmarcan en la polémica en torno al uso de células estaminales que el Vaticano y otros sectores religiosos cuestionan, ya que se trata de células adultas, y no de aquellas extraídas de un embrión
Tomado de Infomed
En: Noticias
|
En: Noticias
El VIII Congreso de Implantología Oral BTI ha acogido la presentación de los resultados preliminares de un ensayo clínico sobre el uso del PRGF en el tratamiento de la artrosis y otras lesiones articulares.
Juan Larracoetxea. Bilbao
El plasma rico en factores de crecimiento (PRGF, en siglas inglesas) puede combinarse, mezclarse, adherirse o incorporarse de forma sencilla a otros biomateriales y superficies, lo cual aumenta su versatilidad y las posibilidades terapéuticas que puede tener, favoreciendo su aplicación en cirugía y en diversas situaciones médicas, ya que acelera la cicatrización y regeneración de los tejidos.
A partir de este concepto, el VIII Congreso de Implantología Oral BTI, que se ha celebrado en Bilbao, ha sido el escenario escogido para la presentación de los resultados preliminares de un ensayo clínico con él. Se trata de un estudio randomizado y ciego referente al uso del PRGF en el tratamiento de la artrosis y otras lesiones articulares.
Los resultados en el primer mes arrojaban un beneficio funcional muy significativo, concretamente en torno al 30 ó 35 por ciento
El trabajo multicéntrico está dirigido por el traumatólogo y cirujano Mikel Sánchez, especialista en el tratamiento de deportistas de élite, y se sustenta en alrededor a 180 pacientes y más de 1.500 infiltraciones realizadas.Las primeras conclusiones de dicha investigación son alentadoras, según apuntan los autores, al menos en el periodo de los seis primeros meses, plazo en el que se ha fijado el corte. Hasta el punto de que las conclusiones sugieren que el uso de plasma enriquecido mejora en un 40 por ciento el dolor y la rigidez asociados a la artrosis: “Los resultados en el primer mes ya arrojaban un beneficio funcional muy significativo, concretamente en torno al 30 ó 35 por ciento”. Este porcentaje tiene un margen que incluso mejora a partir del sexto mes.
Tipo autólogo
El laboratorio BTI (Biotechnology Institute), dirigido por Eduardo Anitua, y Mikel Sánchez, director de la Unidad Cirugía Artroscópica, han dado a conocer una nueva propuesta terapéutica para enfermedades degenerativas articulares (artrosis) basada en la utilización de este plasma rico en factores de crecimiento que podría “retrasar su avance mejorando la sintomatología clínica”.
El PRGF desarrollado por Anitua se obtiene de la propia sangre del paciente, sin agentes externos de ningún tipo, y se está aplicando ya con notable éxito en otras áreas de la medicina como la implantología oral, donde se han logrado avances tan espectaculares como los implantes y dientes provisionales en un solo día, operaciones de estética o infiltraciones intra-articulares en procesos degenerativos.
Asimismo, esta sustancia ha despertado un gran interés en traumatología y reumatología y con ella se ha tratado a la mayor parte de los deportistas de élite lesionados en los últimos años, ya que reduce a casi la mitad el tiempo de recuperación.
SOBRE LA MEMBRANA SINOVIAL
La eficacia clínica del PRGF en la articulación se puede atribuir a efectos tales como el efecto anabólico en el metabolismo del cartílago, el bloqueo de la degradación de dicho cartílago y la restitución de un ambiente fisiológico en la articulación inhibiendo la inflamación y disminuyendo el dolor. El proceso consiste en que el PRGF reemplaza el líquido sinovial patológico en situaciones de derrame, inflamación y dolor articular. Asimismo, actúa sobre las células de la membrana sinovial y los sinoviocitos (responsables de la producción del líquido sinovial que baña por completo la articulación) estimulando la producción de ácido hialurónico y otras moléculas bioactivas. El resultado es que mejora la calidad del líquido sinovial, actúa como antiinflamatorio y disminuye el dolor.
En: Noticias
Si el ADN de una célula humana somática (diploide, con 46 cromosomas ) se extrae y se estira disponiéndolo en forma lineal, la longitud total sería de unos 2 metros.
Cuando esta cifra se refiere al número total de células del cuerpo humano (2 billones = 2 x 1012 células) la longitud equivale a 100 000 vueltas a la circunferencia de la Tierra que es 40 000 Km; al recorrido de 7 000 viajes de ida y vuelta a la Luna (distancia Tierra – Luna = 300 000 Km) y para 13 viajes de ida y vuelta al Sol (distancia Tierra – Sol = 150 millones de Km).
Luque Cabrera J, Herráez Sánchez A. Texto ilustrado de Biología Molecular e Ingeniería Genética. Conceptos, técnicas y aplicaciones en Ciencias de la Salud. P 6, 2001. Editorial Ciencias Médica. Ciudad de La Habana, Cuba.
En: Noticias
Publicado en
Stem Cell Therapies in Clinical Trials: Workshop on Best Practices and the Need for Harmonization
Karen Martell1, , , Alan Trounson2 and Elona Baum2
1 Biotechnology Consultant, San Francisco, CA 94107, USA
2 California Institute of Regenerative Medicine, San Francisco, CA 94107, USA
Corresponding author
Summary
A workshop addressing regulation of clinical implementation of stem cell therapies preceded the ISSCR 8th Annual Meeting, cosponsored by the International Society for Stem Cell Research, the California Institute for Regenerative Medicine and the International Society for Cellular Therapy.
Main Text
Introduction
Stem cell therapies offer enormous potential for the treatment of a wide range of diseases and injuries including neurodegenerative diseases, cardiovascular disease, diabetes, arthritis, spinal cord injury, stroke, and burns. However, the regenerative and differentiation capacity and other aspects of stem cells that make them attractive as treatments also create challenges for the establishment of criteria to ensure development of safe and effective therapies. Although emerging regulatory frameworks seek to define these criteria, the absence of legislation or enforcement, desperation for cures and media hype spur a medical tourism industry that exploits differences or gaps in regulatory oversight.
In particular, media hype has created a cottage industry of companies that are selling stem cell treatments that have not been tested in clinical trials as required in certain countries such as the United States (US) and Europe. As such, these companies may place uninformed and often desperate patients at risk. On the other hand, companies that do not rush to market but instead set out to first test their products in clinical trials are faced with a myriad of regulatory requirements that are often uncertain or unclear in their application.
To address this situation, the International Society for Stem Cell Research (ISSCR) is working to establish a roadmap that protects patients and fosters the dramatic innovation in the stem cell field. Regulatory frameworks to achieve this objective were explored on June 15, 2010 in a workshop, which featured eminent scientists and regulators from around the globe. The workshop served as an international forum for discussion of the challenges pertaining to development of stem cell regulations and the need for harmonization.
Challenges to Stem Cell Therapy Development and Regulation
Stem cell-based products present a unique regulatory challenge because standard pharmaceutical paradigms do not wholly apply and accordingly, stem cell therapies do not neatly fit into current regulatory categories. As a result, regulatory requirements are often unclear in their application and create uncertainty.
To better understand how stem cell therapies are faring in this regulatory environment, the California Institute of Regenerative Medicine (CIRM) performed a qualitative survey of their stakeholders and presented it at this workshop. The salient conclusion of the survey is that the relevant regulatory agency, the Food and Drug Administration, USA (FDA), readily permits clinical trials on transient cell therapies, but it is very difficult to get pluripotent or nontransient (integrating) cell therapeutics into trials. Barriers to the advancement of these therapies lie in both technical and regulatory constraints.
Technical constraints include the need for extended vigilance of integrating cells, as well as novel assays and predictive animal models. In particular, given that regenerative stem cell therapies are intended to persist lifelong in the host as part of the therapeutic solution they provide, it will be critical to minimize the presence of any residual undifferentiated cells. Thus, purity threshold levels need to be established at the onset of therapy and long-term patient monitoring will be required. However, it is debatable whether the limit of detection available today is sensitive enough for sufficiently rigorous tracking of cells in vivo. Accordingly, there is a need for the development of high resolution imaging, markers and extended monitoring in different species to identify which ones are the most predictive.
Another key finding of the CIRM survey is that regulatory uncertainty creates delays in the clinical development of pluripotent and nontransient cell therapies. As the level of uncertainty rises, development costs escalate and investment dollars attenuate. Frustrated companies surveyed by CIRM voiced key operational adjustments that could enhance regulatory predictability: early notification of newly formulated positions or guidance espoused by the FDA, more frequent and consultative communication with the agency, and ability to obtain as many binding decisions as possible for aspects of preclinical and clinical programs. Some companies felt that the risk-benefit evaluation should consider the cost to patients of delaying development of new therapies that could treat them.
There is a clear need for new research tools and regulatory guidance to foster development of the types of stem cells that are potentially the most therapeutically impactful.
International Oversight
The momentum of stem cell therapy advancement is outpacing the speed of legislation and regulation. Nonetheless, governments, academia and the private sector are building frameworks to lay the foundation for regulation (Table 1). These evolving frameworks reflect unique cultural differences that give rise to a spectrum of varying risk tolerances in stem cell research, development and commercialization. Eminent scientists and regulatory experts from around the globe outlined their positions, pointing to some unique features of their regions.
Table 1 Regulatory Frameworks by Region
Country Regulatory Framework Related Websites
Argentina Ministry of Health and Administration of Medications, Foods, and Medical Technology (ANMAT) created Instituto Nacional Central Unico Coordinador de Ablacion e Implante (INCUCAI) in 2007 as an agency relating to the use of human cells for implantation. In 2008, the Consorcio de Investigación en Celulas Madres (CICEMA) was created to foster ties between industry, academia and the clinic. http://www.msal.gov.ar/
http://www.anmat.gov.ar/
http://www.incucai.gov.ar/
www.cicema.org.ar/english/home_eng
China The Ministry of Health of the People’s Republic of China (MOH) provides guidance on regulation of stem cell therapies. http://www.moh.gov.cn/; http://eng.sfda.gov.cn/eng/
European Union The Advanced Therapy Medicinal Products (ATMP) Regulation was adopted by the European Medicines Agency (EMA) in 2007. Stem cell therapies are currently an area of discussion within the Committee for Advanced Therapies (CAT) created under the ATMP. http://ec.europa.eu/health/human-use/advanced-therapies
http://www.ema.europa.eu/
India The Indian Council for Medical Research (ICMR) created the National Apex Committee for Stem Cell Research and Therapy (NAC-SCRT), which is an interagency body tasked with the oversight of the research and development of stem cell therapeutics. http://www.icmr.nic.in/
Japan The Japanese Ministry of Health, Labor and Welfare (MHLW) drafted guidelines for development and approval of novel medical products including adult stem cells. Pluripotent cells are not yet addressed in the current version of the guidelines. www.mhlw.go.jp/english
United States of America The Center for Biologics Evaluation and Research (CBER), Office of Cellular, Tissue and Gene Therapies (OCTGT) is charged with the oversight of stem cell products. In 2005, CBER-OCTGT issued guidance on cellular therapies in the Tissue Rules (CFR 1271) and in 2008 provided a briefing pertaining to hESC-related therapies. www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts
Argentina
Stem cell therapies are not yet approved in Argentina; however, to begin to build the infrastructure for their regulation, the Ministry of Health and Administration of Medications, Foods, and Medical Technology (ANMAT) created two units directed toward cellular treatments. The first, Instituto Nacional Central Unico Coordinador de Ablacion e Implante (INCUCAI), was created by a resolution of the Ministry of Health in 2007 as an agency relating to the use of human cells for implantation. The second, Consorcio de Investigación en Celulas Madres (CICEMA), is a consortium created in 2008 with the objective of studying the therapeutic potential of stem cells, fostering ties between industry, academia, and the clinic and setting up processes to develop these discoveries in a rigorous way.
China
The State Food and Drug Administration (sFDA) regulated cellular therapies in China until 2009, when the sFDA became part of the Ministry of Health (MoH). Accordingly, in the process of absorbing the sFDA and establishing uniform policies to regulate cell transplants, the MoH is requiring certification of organ transplant and cellular therapy centers and procedures by the end of 2010. Although cell therapies are now centrally regulated by MoH, there are special administrative regions (SAR) that regulate their own medical care. These include Hong Kong, Shenzhen, and Tibet. In particular, the Hong Kong SAR has its own Department of Health that approves clinical trials.
China currently permits autologous transplant of bone marrow, off-label use of cord blood and fetal cell transplants. As such, approved stem cell clinical trials are currently ongoing in China. This includes a 400 patient phase 3 clinical trial in which cord blood mononuclear cells are transplanted into patients with chronic spinal cord injuries. The trial is randomized to oral lithium or placebo and patients are followed for 1 year. Prior preclinical animal studies were not conducted.
The European Union
The European Medicines Agency (EMA) regulatory framework for stem cell-based therapies is complex and dynamic. In 2007, the EMA adopted the Advanced Therapy Medicinal Products (ATMP) Regulation. The ATMP comprises new medical products based on genes (gene therapy), cells (cell therapy), and tissues (tissue engineering) and allows for the creation of novel committees and processes aimed at the development of these new medical products.
In 2008, the ATMP established a multidisciplinary Committee for Advanced Therapies (CAT) to assess products and track related scientific developments. CAT consists of 22 experts from national competent authorities; five members from the Committee for Medicinal Products for Human Use (CHMP); two patients; and two clinicians and alternates for all aforementioned positions. CAT is currently considering various aspects of stem cell-based medicinal products and monthly meeting reports are available on their website. The ATMP allows for a centralized marketing authorization procedure with the aim of leveraging the collective EU expertise while permitting country to country differences with respect to the requirements for entering into the clinic. Member states have the right to refuse to market a product nationally on ethical grounds, so an approved product might not be marketed in all EU/European Economic Area (EEA) countries.
With respect to marketing of stem cell therapies, there are commercially available products in the EU currently marketed under old frameworks. These therapies are effectively grandfathered under a transitional period that extends until 2011. Member states have authority to allow or refuse marketing of these therapies. It is important to note that the EMA does not support the marketing of unlicensed stem cell therapies.
One especially unique feature of the ATMP that bears mentioning is the recognition that a disproportionate share of new medical products will be generated by smaller companies and hospitals rather than by large pharmaceutical firms. To this end, the ATMP provides incentives for small and medium-sized enterprises, including scientific advice, special certification procedures, and fee reductions.
India
Robust interest in stem cell treatments in India results from a unique combination of three main drivers: (1) significant unmet health needs; (2) high consumer demand from a large private healthcare network; and (3) historical trust in alternative systems of medicine, which may not be evidence based. This high level of interest in stem cell treatments also engenders ample funding for research and development of stem cell therapies through venture capitalists and through the Department of Biotechnology, which supports 90% of the projects.
The building blocks for regulatory approval of stem cell therapies are still in development. The Indian Council for Medical Research (ICMR) formulated guidelines for stem cell research in 2007. In particular, the ICMR has forbidden the use of embryonic cells for clinical treatment in its guidelines. However, these guidelines have not yet been converted into law and thus it is expected, but not mandatory, to register all stem cell clinical trials.
While the regulatory system is still in development, there are currently different mechanisms to regulate clinical translation, variable criteria used by oversight bodies for protection for human subjects and the ability to regulate practice of medicine separate from research. To unify and streamline the process, the National Apex Committee for Stem Cell Research and Therapy (NAC-SCRT) was created in 2009. NAC-SCRT is an interagency body created with the aim of effectively reviewing and monitoring stem cell research in India.
Japan
The Ministry of Health, Labor and Welfare (MHLW) has produced a Guideline on Ensuring Quality and Safety of Products Derived from Processed Human Cell and Tissues (MHLW Notification #1314; Nov 26, 2000) as the basis for both the regulation of stem cell clinical research as well as the promotion of regenerative medicine. In this guideline, the definition of stem cells comprises tissue-derived human stem cells that are multipotent and self-renewing. It is noteworthy that embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are excluded from these guidelines. The MHLW is currently in the process of amending the guidelines to include ESCs and iPSCs. Meanwhile, transplantation of ESCs is expressly prohibited. Also, the MHLW has formed a committee that is working to amend the guidelines to consider collaboration, manufacturing process, proof of concept, safety assessment, and clinical safety management of stem cell therapies.
United States
The FDA’s Center for Biologics Evaluation and Research (CBER), Office of Cellular, Tissue and Gene Therapies (OCTGT) is charged with the oversight of stem cell products as well as other biological products including gene therapies, tumor vaccines and immunotherapies. In 2005, CBER-OCTGT issued the Tissue Rules (21 CFR 1271), which form the basis for regulation of all human cells, tissues, and cellular and tissue-based products (HCT/Ps). Regarding stem cells specifically, in 2008 CBER-OCTGT generated guidance for ESC-based therapies as well as considerations for preclinical safety testing and patient monitoring.
Stem Cell Tourism
The absence of international harmonization of regulations and robust enforcement has allowed stem cell tourism to take root. The practice of traveling abroad for medical treatment does not in itself present concern if patients are availing themselves of treatments that are part of regulated trials or, where marketed, have been established through clinical trials to be safe and effective. However, this is not always the case.
Stem cell clinics frequently advertise procedures on the internet and promise to deliver therapeutic outcomes that are simply not backed by scientific literature (Lau et al., 2008). In some cases, large sums of money are charged and can range from $20,000$30,000 or more.
In response to aggressive marketing campaigns, the ISSCR launched a new website (http://www.closerlookatstemcells.org/) based on recommendations from the ISSCR’s Task Force on Unproven Stem Cell Treatments (Taylor et al., 2010). The goal of the website is to provide patients with information about stem cells pertaining to stem cell treatments and to outline widely accepted best practices in introducing new medicines into the clinic.
Beginnings of Harmonization
Although the stem cell industry may not be mature enough to support the types of harmonization activities that we have seen in the biotechnology field, regulators are making efforts to understand one another’s approaches across borders. One particular example of cooperation is the existing FDA-EMA Cluster, which expanded its scope in 2008 to include cell and gene therapies after the creation of the ATMP regulation. A second example is the role of the UK-based Economic and Social Research Council (ESRC) in fostering the development of stem cell regulations in Argentina.
Global harmonization efforts will ultimately need to accommodate nuances of cultural dissimilarities and risk appetites to strike an acceptable balance between progress and safeguards. There are several bodies that can play complementary roles in this international effort, including the National Institute of Standards and Technology (NIST), the Council for International Organizations of Medical Sciences (CIOMS), and the International Conference on Harmonisation (ICH), as well as the sponsors of the regulatory workshop, ISSCR, CIRM, and the International Society for Cell Therapy.
Conclusions
The tenor of the regulatory workshop revealed a collective commitment to an ambitious and complex therapeutic goal. Key takeaways included (1) awareness of the need for legislation and more rigorous enforcement in some countries; (2) the importance of independent review and transparencyin particular, the imperative to publish through a process of peer-review and to report negative data; (3) desire to harmonize oversight mechanisms for consistency, simplicity and efficiency; (4) the need to manage conflicts of interest; and (5) recognition of the medical needs of patients and the responsibility to move forward together as rapidly and as safely as possible.
References
Lau et al., 2008 Lau, D., Ogbogu, U., Taylor, B., Stafinski, T., Menon, D., and Caulfield, T. (2008). Cell Stem Cell 3, 591594. PubMed
Taylor et al., 2010 Taylor, P.L., Barker, R.A., Blume, K.G., Cattaneo, E., Colman, A., Deng, H., Edgar, H., Fox, I.J., Gerstle, C., Goldstein, L.S., et al. (2010). Cell Stem Cell 7, 4349. PubMed
Articulo completo en Cell Stem Cell, Volume 7, Issue 4, 451-454, 8 October 2010 a través del HINARI
El Sol de Tijuana
por Ana Luz Sánchez Aguirre
Tijuana.- Entre los avances que registra la medicina la tendencia para los próximos años se encuentra la utilización de las células madre para obtener las células del páncreas que producen insulina, lo cual ofrecería un tratamiento para tratar a los enfermos con diabetes, informó el médico bariatra Bruno Roldan Melo.
Al respecto comentó que un estudio reciente realizado con ratones diabéticos, investigadores descubrieron que las células madre humanas no sólo repararon las células productoras de insulina de los roedores, sino que arreglaron células de sus riñones dañados.
“La idea detrás de aplicar este tipo de tratamiento a los diabéticos, mencionó, parte de que la diabetes tipo 1 tiene su origen en que el sistema inmunitario de las que la sufren ataca y destruye las células beta, que son las que producen la insulina que a su vez se encarga de regular el nivel de azúcar”, señaló.
En este sentido, dijo que aunque hasta el momento no está aprobado dicho tratamiento, se trata de un hallazgo interesante y novedoso, porque se estima que a nivel mundial existen alrededor de ocho millones de diabéticos que además tienen daño en los riñones.
Melo Roldán refirió que desde hace años ha habido una controversia en Estados Unidos sobre el uso de células madre obtenidas de embriones humanos, sin embargo, las investigaciones continúan en el sector privado y cuenta con el respaldo de los gobiernos de algunos países.
“Las posibilidades terapéuticas que abren las investigaciones sobre las células madre van unidas a un debate ético, por un lado están los que defienden que se puede experimentar y por el otro, los que consideran que ese uso atenta contra la vida humana”, expresó.
Agregó que la medicina está evolucionando a pasos agigantados y se deben considerar todas aquellas alternativas que permitan a los enfermos desarrollar un mejor nivel de vida, teniendo presente que la prevención es la mejor herramienta contra todos los males
En: Noticias
L’HOSPITALET DE LLOBREGAT (BARCELONA), 28 Oct. (EUROPA PRESS) –
Un centenar de especialistas en patología de la rodilla se reúnen en el Hospital de Bellvitge para analizar los últimos avances en este campo médico. El uso de células madre es uno de los ámbitos que abre mayores expectativas de futuro en las patologías de la rodilla donde la artrosis y las lesiones de menisco y de ligamentos son los problemas más frecuentes.
En declaraciones a Europa Press, el especialista en cirugía ortopédica del Hospital de Bellvitge Joaquim Cabot ha explicado que la investigación con células madre tiene como objetivo que estas células puedan regenerar huesos o cartílagos. “Esto es algo que está en marcha, pero no está lo suficientemente experimentado clínicamente como para aplicarlo en los hospitales, pero tiene un futuro impresionante”, según Cabot.
Actualmente, hay algunos tratamientos con células madre que ya se están aplicando en la medicina general. Es el caso del uso de células madre procedentes de la cresta ilíaca del paciente. “Se concentran y se colocan allí donde creemos que son necesarias y se ha comprobado su indicación para casos de necrosis ósea del cóndilo femoral y de la cadera”, explica el doctor.
Otra terapia biológica es la del factor del crecimiento que se utiliza para realizar tratamientos de conservación de la rodilla. Los factores de crecimiento, que se extraen de la sangre del paciente, contribuyen a la renovación celular y a mejorar las condiciones de los tejidos.
En el Hospital de Bellvitge, la patología de rodilla más frecuente es la artrosis, provocada por el desgaste del cartílago. Cada año se realizan unas 300 operaciones de prótesis de rodilla en este centro sanitario. Aparte de esta problemática, otras patologías de rodilla son las lesiones de menisco y de ligamentos, especialmente entre las personas jóvenes que hacen deporte
En: Noticias